VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. II-Semester Advanced Supplementary Examinations, September-2023 Differential Equations & Linear Algebra

(Common to CSE, AIML & IT)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No	Stem of the question	Th. A	r •		10 =
1.	Define i) Exact Differential Equation and ii) Integrating Factor	M			O PO
2.	Under what condition the differential equation	2	1		1,2,1
	(x + x8 + ay2)dx + (y8 - y + bxy)dy = 0 becomes exact?	2	2	1	1,2,1
3.	Write the general solution of $(D^4 - a^4)y = 0$.				
4.	Write the differential equation governing L-C-R circuit.	2	2	2	1,2,1
5.	Write the Standard Basis for i) Vector Space of Polynomials, P_n and	2	1	2	1,2,1
	ii) Vector Space of matrices of order $2x2$, $M_{2\times 2}$.	2	1	3	1,2,12
6.	Define Linear Dependence and Independence of vectors.	2		0	
7.	Define Linear Transformation.	2	1	3	1,2,12
8.	If $T: P_4 \to P_3$ is a Linear Transformation defined by	2	_1_	4	1,2,12
	T(p(x)) = p'(x) then determine the Null Space.	2	2	4	1,2,12
9.	Define Rank of a matrix.				
10.	State Triangle Inequality.		1	5	1,2,12
	Part-B $(5 \times 8 = 40 Marks)$	2	1	5	1,2,12
1. a)	Define i) General solution and ii) Singular solution of a differential equation	2	1	1	1,2,12
b)	Find the general and singular solution of the Clairaut's equation $y = xy' - \left(\frac{1}{y'}\right)$.	6	3	1	1,2,12
2. a)	Find the Particular Integral of $(D^2 - 3D + 2)y = xe^{3x}$.	2	2		
b)	Solve the following differential equation (D2)	5	3	2 2	1,2,12
. a)	the method of Variation of Parameters. Define i) Subspace ii) Basis of a Vector Space iii) Dimension of a Vector Space		1	3	1,2,12
b)	If W is a subspace of $M_{2\times 2}$ of matrices with trace equal to 0, and if $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$ then show that S is a basis for W.	5	2	3	1,2,12

Define Self-Orthogonal families. Show that the family of curves $y^2 = 4c(c+x)$ are self-orthogonal. Solve $(D^2 + 4D + 4)y = 4\cos x + 3\sin x$, giver that $y(0) = 1$, 4 3 2 1,2,12 $y'(0) = 0$. Answer any <i>two</i> of the following:							
whether T is a Linear Transformation. Define the Linear operator $T: R^3 \to R^3$ by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x \\ -y \\ z \end{bmatrix}$. i) Find the matrix of Linear operator T relative to the standard basis of R^3 . ii) Use the result of a) to find $T \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$. 15. a) For what values of k , the matrix $\begin{bmatrix} 4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3 \end{bmatrix}$ has rank 3. b) Let B be the basis for R^3 given by $B = \begin{cases} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$. Apply Gram-Schmidt's process to B to find an orthonormal basis for R^3 using the standard inner product of R^3 . 16. a) Define Self-Orthogonal families. Show that the family of curves $y^2 = 4c(c + x)$ are self-orthogonal. b) Solve $(D^2 + 4D + 4)y = 4 \cos x + 3 \sin x$, giver that $y(0) = 1$, $y'(0) = 0$. 17. Answer any two of the following:	14. a)	Define a mapping $T: R^2 \to R^2$ by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} e^x \\ e^y \end{bmatrix}$. Determine	3	2	4	1,2,12	
i) Find the matrix of Linear operator T relative to the standard basis of R^3 . ii) Use the result of a) to find $T\begin{pmatrix} \begin{bmatrix} 1\\1\\2 \end{bmatrix} \end{pmatrix}$. 15. a) For what values of k , the matrix $\begin{bmatrix} 4 & 4 & -3 & 1\\ 1 & 1 & -1 & 0\\ k & 2 & 2 & 2\\ 9 & 9 & k & 3 \end{bmatrix}$ has rank 3. b) Let B be the basis for R^3 given by $B = \{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \}$. Apply Gram-Schmidt's process to B to find an orthonormal basis for R^3 using the standard inner product of R^3 . 16. a) Define Self-Orthogonal families. Show that the family of curves $y^2 = 4c(c+x)$ are self-orthogonal. Solve $(D^2 + 4D + 4)y = 4\cos x + 3\sin x$, given that $y(0) = 1$, $y'(0) = 0$. 17. Answer any two of the following:		whether T is a Linear Transformation.	5	2	4	1,2,12	
i) Find the matrix of Linear operator T relative to the standard basis of R^3 . ii) Use the result of a) to find $T\begin{pmatrix} \begin{bmatrix} 1\\1\\2 \end{bmatrix} \end{pmatrix}$. 15. a) For what values of k , the matrix $\begin{bmatrix} 4 & 4 & -3 & 1\\ 1 & 1 & -1 & 0\\ k & 2 & 2 & 2\\ 9 & 9 & k & 3 \end{bmatrix}$ has rank 3. b) Let B be the basis for R^3 given by $B = \{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \}$. Apply Gram-Schmidt's process to B to find an orthonormal basis for R^3 using the standard inner product of R^3 . 16. a) Define Self-Orthogonal families. Show that the family of curves $y^2 = 4c(c+x)$ are self-orthogonal. Solve $(D^2 + 4D + 4)y = 4\cos x + 3\sin x$, given that $y(0) = 1$, $y'(0) = 0$. 17. Answer any two of the following:	b)	Define the Linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T\left(\begin{bmatrix} y \\ z \end{bmatrix}\right) = \begin{bmatrix} -y \\ z \end{bmatrix}$.					
For what values of k , the matrix $\begin{bmatrix} 4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3 \end{bmatrix}$ has rank 3. b) Let B be the basis for R^3 given by $B = \left\{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}\right\}$. Apply Gram-Schmidt's process to B to find an orthonormal basis for R^3 using the standard inner product of R^3 . 16. a) Define Self-Orthogonal families. Show that the family of curves $y^2 = 4c(c+x) \text{ are self-orthogonal}.$ b) Solve $(D^2 + 4D + 4)y = 4 \cos x + 3 \sin x, \text{ giver. that } y(0) = 1, y'(0) = 0.$ 17. Answer any <i>two</i> of the following:		i) Find the matrix of Linear operator T relative to the standard basis					
For what values of k , the matrix $\begin{bmatrix} 4 & 4 & 3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3 \end{bmatrix}$ has rank 3. b) Let B be the basis for R^3 given by $B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. Apply Gram-Schmidt's process to B to find an orthonormal basis for R^3 using the standard inner product of R^3 . 16. a) Define Self-Orthogonal families. Show that the family of curves $y^2 = 4c(c+x)$ are self-orthogonal. b) Solve $(D^2 + 4D + 4)y = 4\cos x + 3\sin x$, given that $y(0) = 1$, $y'(0) = 0$. 17. Answer any two of the following:		ii) Use the result of a) to find $T \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.					
Let B be the basis for R ³ given by $B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$. Apply Gram-Schmidt's process to B to find an orthonormal basis for R ³ using the standard inner product of R ³ . Define Self-Orthogonal families. Show that the family of curves $y^2 = 4c(c+x)$ are self-orthogonal. Solve $(D^2 + 4D + 4)y = 4\cos x + 3\sin x$, giver that $y(0) = 1$, $y'(0) = 0$. Answer any two of the following:	15. a)	For what values of k , the matrix $\begin{bmatrix} 4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3 \end{bmatrix}$ has rank 3.	3	2	5	1,2,12	7
Gram-Schmidt's process to B to find an orthonormal basis for R^3 using the standard inner product of R^3 . 16. a) Define Self-Orthogonal families. Show that the family of curves $y^2 = 4c(c+x)$ are self-orthogonal. b) Solve $(D^2 + 4D + 4)y = 4\cos x + 3\sin x$, given that $y(0) = 1$, $y'(0) = 0$. 17. Answer any <i>two</i> of the following:	b)	Let B be the basis for R^3 given by $B = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$. Apply	5	3	5	1,2,12	
R ³ using the standard inner product of R ³ . Define Self-Orthogonal families. Show that the family of curves $y^2 = 4c(c+x) \text{ are self-orthogonal.}$ b) Solve $(D^2 + 4D + 4)y = 4 \cos x + 3 \sin x$, giver that $y(0) = 1$, 4 3 2 1,2,12 $y'(0) = 0$. Answer any <i>two</i> of the following:		Gram-Schmidt's process to B to find an orthonormal basis for					
Define Self-Orthogonal families. Show that the family of curves $y^2 = 4c(c+x) \text{ are self-orthogonal.}$ b) Solve $(D^2 + 4D + 4)y = 4 \cos x + 3 \sin x$, giver that $y(0) = 1$, 4 3 2 1,2,12 $y'(0) = 0$. Answer any <i>two</i> of the following:		R^3 using the standard inner product of R^3 .					
b) Solve $(D^2 + 4D + 4)y = 4 \cos x + 3 \sin x$, given that $y(0) = 1$, 4 3 2 1,2,12 $y'(0) = 0$. Answer any <i>two</i> of the following:	16 2	Define Self-Orthogonal families. Show that the family of curves	4	2	1	1,2,12	
b) Solve $(D^2 + 4D + 4)y = 4 \cos x + 3 \sin x$, given that $y(0) = 1$, 4 3 2 1,2,12 $y'(0) = 0$. Answer any <i>two</i> of the following:	10. a						
	b	Solve $(D^2 + 4D + 4)y = 4 \cos x + 3 \sin x$, giver that $y(0) = 1$,	4	3	2	1,2,12	
a) $K = \{ k \} / k \in R \}$ is a subset of the Vector Space $V = R^2 \mid A \mid $						1 0 10	
with the standard definitions of vector addition	8	If $W = \left\{ \begin{bmatrix} k \\ k+1 \end{bmatrix} / k \in R \right\}$ is a subset of the Vector Space $V = R^2$ with the standard definitions of vector addition and scalar	4	3	3	1,2,12	
multiplication, then determine whether W is a subspace of V .			. 4	3	4	1,2,12	2
b) If W is a subspace of all symmetric matrices in the vector space 1-222	1	and if					
$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ is a Basis for W then find the}$		$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ is a Basis for W then find the}$	9				
coordinates of $\begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix}$ relative to B.		coordinates of $\begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix}$ relative to B.					
		Diagonalize the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ using Similarity Transformation.		1 3		1,2,1	2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

	Tata Tarana I aval 1	21%
<u>i)</u>	Blooms Taxonomy Level – 1 Blooms Taxonomy Level – 2	32%
11)	Blooms Taxonomy Level – 3 & 4	47%
iii)	Blooms Taxonomy Level 5 & .	